S§ Proof

""" Bring trust into your projects

Blockchain Security | Smart Contract Audits | KYC
Development | Marketing

MADE IN GERMANY

JetBolt

AUDIT

SECURITY ASSESSMENT

05. August, 2024

FOR

Y

Yy SolidProof_io <d @solidproof_io

& soLDroo I —
Introduction

Disclaimer

Project Overview
Summary
Social Medias
Audit Summary
File Overview
Imported packages
Components
Exposed Functions
Capabilities

Inheritance Graph

Audit Information
Vulnerability & Risk Level
Auditing Strategy and Techniques Applied
Methodology

Overall Security
Upgradeability
Ownership

Ownership Privileges
Minting tokens
Burning tokens
Blacklist addresses
Fees and Tax
Lock User Funds

Centralization Privileges
Audit Results

©O ® I N9 o0 o0 N NN KWW

© ® I o 0 AN N = =0 O

NN
N O

@' SOLIDProof I

Introduction

SolidProof.io is a brand of the officially registered company MAKE
Network GmbH, based in Germany. We're mainly focused on
Blockchain Security such as Smart Contract Audits and KYC verification
for project teames.

Solidproof.io assess potential security issues in the smart contracts
implementations, review for potential inconsistencies between the
code base and the whitepaper/documentation, and provide
suggestions for improvement.

Disclaimer

SolidProof.io reports are not, nor should be considered, an
“endorsement”or “disapproval” of any particular project or team. These
reports are not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team.
SolidProof.io do not cover testing or auditing the integration with
external contract or services (such as Unicrypt, Uniswap, PancakeSwap
etc'..)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process
intending to help our customers increase the quality of their code
while reducing the high level of risk presented by cryptographic
tokens and blockchain technology. Blockchain technology and
cryptographic assets present ahigh level of ongoing risk. SolidProof’s
position is that each company andindividual are responsible for their
own due diligence and continuous security. SolidProof in no way
claims any guarantee of the security or functionality of the

technology we agree toanalyze.

& soLDroo I

Project Overview

Summary
Project Name JetBolt

Website https://ietbolt.io/

About the project JetBolt provides an invisible layer between applications
and the blockchain. Discover some of the amazing
features packed into this lightning-fast new token.

Provided as files.
commie 8

Social Medias

reiaram 8
https://x.com/jetboltofficial

YouTube

TikTok
LinkedIn

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

(@; SOLIDProof I —

Audit Summary
Version Delivery Date Change Log

V1.0 19. July 2024 + Layout Project
Automated/ Manual-Security Testing
Summary

V1.3 05. August 2024 - Reaudit

Note - The following audit report presents a comprehensive security
analysis of the smart contract utilized in the project that includes
outside manipulation of the contract's functions in a malicious way.
This analysis did not include functional testing (or unit testing) of the
contract/s logic. We cannot guarantee 100% logical correctness of the
contract as we did not functionally test it. This includes internal
calculations in the formulae used in the contract.

@ SOLIDProof I —

File Overview
The Team provided us with the files that should be tested in the

security assessment. This audit covered the following files listed below
with an SHA-THash.

File Name SHA-1 Hash

contracts\Token.sol 1dcbb45ea7e706a516801c3d00994f540f0313eb
contracts\Sessions.sol dcOf7dee8bdfa889c0e631f0e33ff3bf502e4ce8
contracts\Logs.sol 89cedd07f349e269146908106076b2bfelc93a79
contracts\Friends.sol fe3c6e8af4385363dc2b3a9¢c1a0358a05¢c43fb63
contracts\interfaces\IToken.sol 78dcf07058e3934b23fcel360e42ecec61e0f410

contracts\interfaces\ISessions.sol 57040a22d528ee15694aa75bb5588530c20f30d1
contracts\interfaces\ILogs.sol 96ef43ef0fc37a779df9ae69751586504c7fa724

contracts\interfaces\IFriends.sol c90c372fb84bc768aaae7alal8b5903399632648

Please note: Files with a different hash value than in this table have been modified
after the security check, either intentionally or unintentionally. A different hash
value may (but need not) be an indication of a changed state or potential
vulnerability that was not the subject of this scan.

Imported packages.
Used code from other Frameworks/Smart Contracts.

Dependency / Import Path Count
@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol 4
@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol 3

@openzeppelin/contracts-
upgradeable/token/ERC20/ERC20Upgradeable.sol

Note for Investors: We only audited contracts mentioned in the scope
above. All contracts related to the project apart from that are not a part of
the audit, and we cannot comment on its security and are not responsible
for it in any way.

@ SOLIDProof I —

External/Public functions

External/public functions are functions that can be called from outside of a contract,
i.e., they can be accessed by other contracts or external accounts on the blockchain.
These functions are specified using the function declaration’s external or public
visibility modifier.

State variables

State variables are variables that are stored on the blockchain as part of the
contract'sstate. They are declared at the contract level and can be accessed
and modified by any function within the contract. State variables can
be needed within visibility modifier, such as public, private or internal,
which determines the access level of the variable.

Components
=»Contracts [Libraries @, Interfaces ¢ Abstract

4 0 4 0

Exposed Functions
This section lists functions that are explicitly declared public or payable.
Please note that getter methods for public stateVars are not included.

Public & Payable

66 0
External Internal Private Pure View
8 44 3 2 27

StateVariables

Total Public

53 52

& soLDroo I

Capabilities
Solidity & Can B Uses @ Has
Versions Experimental Receive Assembl Destroyable
observed Features Funds y Contracts
0.8.20 3yes
~0.8.20 | TTTTTTC C asm]) [EomEeeeees
blocks)
& Low- 28 Uses s ©
Transfer Level Delegate Hash ECRecover New/Create/
s ETH Calls Call Functions Create2
yes

€ souDFioo I —

Inheritance Graph

An inheritance graph is a graphical representation of the inheritance hierarchy
among contracts. In object-oriented programming, inheritance is a mechanism
that allows one class (or contract, in the case of Solidity) to inherit properties and
methodsfrom another class. It shows the relationships between different contracts
and how they are related to each other through inheritance.

ERC20Upgradeable

el
OwnableUpgradeable

@: SOLIDProof

Audit Information

Vulnerability & Risk Level

Risk represents the probability that a certain source threat will exploit
thevulnerability and the impact of that event on the organization or
system.Therisk level is computed based on CVSS version 3.0.

9-10

Medium

Avulnerability that can disrupt the
contract functioning in a number
of scenarios, or creates a risk that
the contract may be broken.

A vulnerability that affects the
desired outcome when using a
contract, or provides the
opportunity to use a contractin an
unintended way.

A vulnerability that could affect
the desired outcome of
executingthe contractina
specific scenario.

Avulnerability that does not have
a significant impact on possible
scenarios for the use of the
contract and is probably
subjective.

A vulnerability that have
informational character but is not
effecting any of the code.

Immediate action to
reduce risk level.

Implementation of
corrective actions as
soon aspossible.

Implementation of
corrective actionsina
certain period.

Implementation of
certain corrective
actions or accepting
therisk.

An observation that
does not determine a
level of risk

10

@ SOLIDProof I

Auditing Strategy and Techniques Applied

Throughout the review process, care was taken to check the repository
for security-related issues, code quality, and compliance with
specifications and best practices. To this end, our team of experienced
pen-testers andsmart contract developers reviewed the code line by
line and documented any issues discovered.

We check every file manually. We use automated tools only so that
they help usachieve faster and better results.

Methodology

The auditing process follows a routine series of steps:

. Code review that includes the following:

a. Reviewing the specifications, sources, and instructions
provided to
SolidProof to ensure we understand the size, scope, and
functionality ofthe
smart contract.

b. Manual review of the code, i.e, reading the source code line
by line to identify potential vulnerabilities.

c. Comparison to the specification, i.e., verifying that the code
does what is described in the specifications, sources, and
instructions provided to SolidProof.

2 Testing and automated analysis that includes the following:

a. Test coverage analysis determines whether test cases cover
codeand how much code is executed when those test cases
are executed.

b. Symbolic execution, which is analysing a program to
determine what inputs cause each part of a program to
execute.

3 Review best practices, i.e, review smart contracts to improve efficiency,
effectiveness, clarity, maintainability, security, and control based on
best practices, recommendations, and research from industry and
academia.

4, Concrete, itemized and actionable recommendations to help you
secureyour smart contracts.

11

@ SOLIDProof I —

Overall Security
Upgradeability

Description

The contract is an upgradeable contract. The
Deployer is able to change or add any
functionalities to the contract after deploying.

Comment

The Project owner confirms it as part of logic.
Hence, the issue is acknowledged.

File/Line(s): L19-24
Codebase: Sessions.sol
function initialize(
public
initializer

__ Ownable init(msg.sender);

File/Line(s): L36-41
Codebase: Logs.sol

function initialize(
public
initializer

__ Ownable init(msg.sender);

File/Line(s): L27-32
Codebase: Friends.sol
Functiﬂn initializel(

public
initializer

__Ownable init(msg.sender);

12

& soLDroo I

File/Line(s): L55-65
Cobas: Token.sol

function initialize()
public
initializer

_ ERC28 init("JetPaw™, "JETPAW™);
__Ownable_init(msg.sender);

Discount Markers = |[5808, 1068, 5080, 258, 180];

Discount Percentages = |25, 20, 15, 18, 5],
Presale Start Time = block.timestamp;

13

@ SOLIDProof I

Ownership

Description The owner has not renounced the ownership that
means that the owner retains control over the
contract's operations, including the ability to
execute functions that may impact the contract’s
users or stakeholders. This can lead to several
potential issues, including:

» Centralizations

* The owner has significant control over
contract's operations.

Comment The project owner confirms it as the part of the
business logic.

Note - The contract cannot be considered as renounced till it is not deployed
or having some functionality that can change the state of the contract.

14

@ SOLIDProof I —

Ownership Privileges
These functions can be dangerous. Please note that abuse can lead to financial loss.
We have a guide where you can learn more about these Functions.

Minting tokens

Minting tokens refer to the process of creating new tokens in a cryptocurrency or
blockchain network. This process is typically performed by the project's owner or
designated authority, who has the ability to add new tokens to the network's total

supply.

Contract owner can mint — .
The owner can mint new tokens.

new tokens.
Description The owner is able to mint new tokens once the
contract is deployed.
Comment The owner or signer address can mint new

tokens to the recipient address not more than
the presale cap amount in the contract.

15

@ SOLIDProof I —

Burning tokens

Burning tokens is the process of permanently destroying a certain number of
tokens, reducing the total supply of a cryptocurrency or token. This is usually done
to increase the value of the remaining tokens, as the reduced supply can create
scarcity and potentially drive up demand.

Contract owner cannot The owner cannot burn tokens.

burn tokens

Description The owner is not able burn tokens without
any allowances.

Comment N/A

16

@ SOLIDProof I —

Blacklist addresses

Blacklisting addresses in smart contracts is the process of adding
a certain address to a blacklist, effectively preventing them from
accessingor participating in certain functionalities or transactions
within the contract. This can be useful in preventing fraudulent or
malicious activities, such as hacking attempts or money laundering.

Description The owner can blacklist wallets from
claiming the rewards from the contract.

Comment The contract includes a feature that allows
the owner or an authorized address to
restrict users from transferring tokens
from the contract. This functionality is
intended to mitigate risks related to severe
misconduct, such as hacking attempts or
money laundering. However, this feature
should be used with caution, as it can
result in users losing access to their funds.
It is essential to implement safeguards to
ensure that users are not indefinitely
locked out of their tokens without due
cause.

Alleviation The project owner confirms it as part of
business logic.

File/Line(s): L202-226
Codebase: Token.sol

ict_user
er_addressi,
bool ban_status

public

require
msg.sender == Signer Address ||
msg.sender == owner(),
"Unauthorized access"

User_To_Is_Banned|user_addressi| = ban_statusl;

logs.log_transaction
user_addressl|,

ban_status! ? "banned” : "unbanned”,

17

@ SOLIDProof I —

Fees and Tax

In some smart contracts, the owner or creator of the contract can
set fees for certain actions or operations within the contract. These
fees can be used to cover the cost of running the contract, such as

paying for gas fees or compensating the contract's owner for their
time and effort indeveloping and maintaining the contract.

Contract owner cannot

. The owner cannot set fees more than 25%.
levy high taxes
Description The owner cannot set fees of more than 25%.
Comment N/A

18

@ SOLIDProof I —

Lock User Funds

In a smart contract, locking refers to the process of restricting access
to certain tokens or assets for a specified period of time. When token
or assets are locked in a smart contract, they cannot be transferred or
used until the lock-up period has expired or certain conditions have
been met.

Contract owner cannot

lock function The owner cannot lock function.

Description The owner cannot lock the contract.

Comment N/A

19

@ SOLIDEo0f [

Centralization Privileges

Centralization can arise when one or more parties have privileged access or
control over the contract's functionality, data, or decision-making. This can occur,
for example,if the contract is controlled by a single entity or if certain participants
have special permissions or abilities that others do not.

In the project, there are authorities that have access to the following
functions:

File Privileges

Token.sol > The owner can update the logs and friends contract

address.
» The owner can enable the transfer of tokens only once.
» The owner can end the presale.

» The owner or signer address can mint new tokens not
more than the presale cap in the contract.

» The owner or signer address can blacklist users from
transferring and claiming rewards from the contract.

Sessions.sol » There are no ownership privileges in this contract.

Logs.sol

The owner can update the friends and token contract
address.

log transactions and data in the contract.

» The team address and Extra liquidity address can update
the leaderboard in the contract.

» The owner can update the logs contract address.

Recommendations

To avoid potential hacking risks, it is advisable for the client to manage
the private key of the privileged account with care. Additionally, we
recommend enhancing the security practices of centralized privileges
or roles in the protocol through a decentralized mechanism or smart-
contract-based accounts, such as multi-signature wallets.

Here are some suggestions of what the client can do:
- Consider using multi-signature wallets: Multi-signature wallets

require multiple parties to sign off on a transaction before it can be
executed, providing an extra layer of security e.g. Gnosis Safe

> The token contract address or friend contract address can

20

@ SOLIDProof I

- Use of a timelock at least with a latency of e.g. 48-72 hours for
awareness of privileged operations

- Introduce a DAO/Governance/NVoting module to increase
transparency and userinvolvement

- Consider Renouncing the ownership so that the owner cannot
modify any state variables of the contract anymore. Make sure to set
up everything before renouncing.

21

& soLDroo I

Audit Result

Critical Issues
No critical issues

High Issues

No high issues

Medium Issue

No Medium Issues

Low Issue

#1 | Missing events

File Severity Location Status

Sessions.sol L29-39, L41-48, L50-58

Description - Emit all the critical parameter changes.

Alleviation - The project owner confirms it as a part of business logic as
they want to save storage on skale network.

Informational Issue

#1| NatSpec Documentation missing.

Severity Location Status

Informational

Description - If you started to comment on your code, also comment on
all other functions, variables, etc.

22

(@‘ SOLIDP 00 I

Legend for the Issue Status

Attribute or Symbol Meaning

Open
Fixed

Acknowledged(ACK)

Theissue is not fixed by the project team.
Theissueis fixed by the project team.

The issue has been acknowledged or declared as
part of business logic.

23

Blockchain Security | Smart Contract Audits | KYC
Development | Marketing

MADE IN GERMANY

